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SUMMARY

Finite element meshes derived automatically from solid models through recursive spatial subdivision

schemes (octrees) can be made to inherit the hierarchical structure and the spatial _ddressability intrinsic

to the underlying grid. These two properties, together with the geometric regularity that can also be built

into the mesh, make octree based meshes ideally suited for efficient analysis and self-adaptive remeshing

and reanalysis. This paper discusses the element decomposition of the oct,,] cells that intersect the

boundary of the domain. The problem, central to octree based meshing, is solved by combining template

mapping and element extraction into a procedure that utilizes both constructive solid geometry and

6o-un_y representationtechniques.Boundary cellsthatarenot intersectedby the edgeof thedomain

boundary areeasilymapped to predefinedelementtopology.Cellscontainingedges(and vertices)are

firsttransformedintoa planarpolyhedronand then triangulatedviaelementextractors.This paper

alsoanalyzesthe modellingenvironmentsrequiredforthederivationofplanarpolyhedraand forelement

extraction.

1 INTRODUCTION

In this paper, we describe an approach for resolving the geometrical and topological issues that arise

when a recursive spatial subdivision scheme (octree) is used to generate automatically a FEM mesh

from a solid model. Amongst the various schemes that have been proposed for automatic mesh genera-

tion from solid models [W0084, WORD84, CAVE85, SHEP85, YERR85] recursive spatial subdivision

schemes have been found to offer an efficient avenue for automatic mesh generation ms well as for self-

adaptive remeshlng and re.analysis because of two intrinsic properties: hierarchical structure and spatial

sddremsbility [KELA8fl]. To understand the importance of these two properties consider the subdivision

rule and the associated tree structure illustrated - for a 2-D example - in Figure 1.1. The recursive

subdivision rule can be concisely described as follows: (i) the solid domain is "boxed" and the box is

decomposed into quadrants (octants in 3-D); (ii) qua_irants are classified with respect to the domain:

when a quadrant is totally inside or outside of the object, the decomposition ceases; when a quadrant is

neither wholly inside nor outside, it is further subdivided into quadrants; (iii) the process continues until

some minimal resolution level is reached. The resulting quaternal or octal tree can be thought of as a

hierarchical cataloging structure for data describing particular regions cf space. The lowest level of the
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tree (the "resolution"level)contains the smallestspatialregions and the ordinary finiteelements. At

higher levelsthe regionsbecome largerand the finiteelements become substructures("superelements")

with associatedassembled stiffnessmatrices. As shown in [KELA86], such a hierarchicalorganizationis

ideallysuitedfor self-adaptivemesh refinement and incremental analysis.Furthermore, ifthe quadrant

or octant cellsare numbered systematically,then the index of any cellin the hierarchicaltree can be

quicklycomputed from itssizeand position,and converselythe sizeand positionofa cellcan be directly

derived from itsindex. This property,calledspatialaddressability,permits directaccess to pertinent

geometrical and analyticaldata during both globalmesh generation and localizedmesh refinement.
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FIGURE 1.1 : Quadrant sumberins scheme for a 2-D decomposition.

The octree-based scheme presented here is a direct extension of the work in 2-D meshing and adaptive

analysis reported in [KELA86]. The scheme involves two stages of meshing. In the first stage the

interior of the dommn is meshed with a geometrically regular grid of hexahedral elements that includes

all the inside octree cells. In the second stage the mesh is extended to the boundary of the domain by

inserting finite element topologies in the 3-manifolds formed by the intersection of the octree cell with the

bounding surface of the solid. While for 2-D problems the manifolds are cut quadrants that can be easily

decomposed into quadrilateral and triangular elements via template matching, the 3-manifolds associated

to boundary intersecting octree cells are far more complex structures that cannot be handled by templates

alone. Furthermore, to enforce continuity of the field variable and to maintain the geometrical regularity

of the interior mesh, the "nterf&ce between each 3-manifold and neighboring hexahedrai elements must

be a square. Since tetrahedral elements are essential for the decomposition of the cells intersected by



the boundary, the interface requirement can be satisfied only by introducing pentahedral ("pyramid")

elements to provide the transition between triangular and square faces.

In essence, the crucial problem of octree based meshing is to decompose the cells on the boundary into

validelement assemblies while maintaining the hierarchicalstructure,the spatialaddressablity,and the

geometrical regularityassociatedwith the underlying octree grid. In the followingsectionswe discuss

the meshing scheme ingeneral terms and then we focuson the decomposition of 3-D boundary cells.

2 AN OCTREE BASED MESHING SCHEME

We begin by describing the object in s modelling system based on Constructive Solid Geometry z which

provides all the basic geometric operators for spatial decompoeition and meshing. The ides underlying the

octal decomposition scheme is to approximate the object to be meshed with a union of disjoint, variably

sized cells (cubes) [JACK80]. However, such an approximation cannot be directly mapped onto a finite

element mesh for two crucial reasons: (i) adjoining elements corresponding to octal cells of different

size violate the connectivity rules between finite elements, and (ii) the union of orthogonal surfaces that

approx/mates the boundary of the solid contains re-entrant vertices and edges which introduce artificial

singularities in the FEM model. We modify the octal decomposition scheme to yield a valid FEM

discretization according to the following two-stage strategy.

First sta_e of Meshing

The object S is enclosed in a "box" and the box is recursively decomposed into octal cells which are

classified as being "IN"S, "OUT" of S or neither in nor outside ('NIO'). For IN cells subdivision ceases

and the octant is maPL!ed directly on to a finite element substructure. OUT cells are discarded and NIO

cells are further subdivided and classified until a pre-specified level of subdivision (the "resolution" level)

is reached and no cell contains more than one connected boundary segment of S. IN cells at resolution

level are mapped onto finite elements. The collection of IN cells forms the interior octree of the solid.

Figure 2.1 shows the interioroctreefora solidpart - a bracketmodelled inthe PADL-2 domain [HART83].

The classificationprocedure used in thisstage of meshing isdescribed in [LEE82].

Second sta_e of Meshin_

During the second stage the interior octree is extended to the boundary of S, bS. This requires associating

each of the NIO cells (more precisely the intersection of the solid S and the octant) to valid finite element

topologies. The NIO cells that do not contain edges of bS are classified as Simple ('SNIO') and their

finite element topologies are easily derived through template association.

For the NIO cellsthat contain edges and verticesof bS, decompolition through templates isnot feasible

because of the largenumber ofpossibleconfigurationsforthe edge-cellintersection.These cells,labelled

"Complex" NIO (CNIO), are decomposed through a set ofelement extractorsthat operate recursivelyon

the topologicaland geometricaldescriptionofthe cell.The startingpointfor recursiveelement extraction

isa validboundary representationof the polyhedron Re, formed by the intersectionof the CNIO celland

the cuttingplanes on bS. These operators are discussedin detailin the followingsection.

I Constructive Solid Geometry (CSG) exploits the notion of "adding" and "subtract/rig" simple building

bloclm ('primitives") via set-union and set-difference operations.
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FIGURE 2.1 : A bracket and its interior octree.

The finite element mesh is complete at the end of second stage. The interior of the mesh consists of

identical hexahedral elements and substructures associated with IN cells at resolution and higher levels,

respectively. Also, the mesh inherits the hierarchical structure and the spatial addressabi]ity of the

underlying octree decomposition.

As shown in [KELA86, 87], the regularity of the interior mesh together with the spatial addressability of

the entire model provides the basis for a very powerful procedure for doing analysis as well as remeshing

and reanalysis. Briefly, stiffness matrices are built and stored for all the non-OUT cells in the hierarchi-

cal tree (for identical interior elements and substructures they are copied into storage from precomputed

values). This is done from the bottom up by assembling son matrices and condensing-out the interior

degrees of freedom to build parent matrices at each level. A preliminary study on a 2-D implementation

reported in [KELA87] su_ests that this substructuring procedure is asymptotically more efScient than

direct Gauss/an reduction. For adaptive remeshing and reanalysis, spatial addressability allows e/_cient

localized mesh modification. The reanalysis proceeds incrementally: the new stiffness matrices are in-

serted in the appropriate tree location and are combined with the stiffness of the unmodified elements

and substructures.

In conclusion, the strict adherence of the FE mesh to the underlying octree structure offers some unique

advantages for the analysis and, as such, is worth preserving. Therefore, stage 2 of the meshing procedure

is designed in such a way as to leave intact the interior octree and the spatial addressability of the mesh.

2.1 Decomposition of 2-D NIO cells

The approach to 2-D NIO cells decomposition described in [KELA86, 87] is based on deriving finite

element topologies exclusively through templates. In this case the number of required templates is small

because of the following constraints imposed on the topology of the 2-D NIO cells:



(I) eachNIO cellcan be traversedby bS onlyonce,suchthat

NIO N bS - _rI (1-Dsimplyconnectedpolyhedra); (1)

(2) each NIO cell can contain at most one "vertex" node of bS;

(3) each edge of the NIO cell can have at most one intersection with bS.

(b)

(c) (d) (e)

FIGURE 2.2 : Valid (a,b) and invalid (c,d,e) 2-D NIO cellJ.

Validand invalid2-D NIO cellsare shown in Figure2.2.As shown in Figure2.3,the derivationof

elementtopologies,basedon theabove constraints,issimple.When the NIO celldoesnot containany

vertex,theelementtopologymay be derivedby traversingtheboundary ofthe quadrant and counting

the intersectionswith the objectboundary. Ifthe intersectionsare encounteredon alternateedges,

a quadrilateralelement ismapped on to thiscell.Ifthe intersectiontakesplaceon adjacentedges,

triangularelementsare generatedby connectingthe intersectionpointsto the appropriatecellnode

classifiedas IN.

For the case of NIO celts containing a vertex of bS, the vertex becomes a finite element node and triangles

are generated by connecting this node to all the intersection points and the cell nodes that are inside the
domain.

Thissimpledecompositionapproach- b_udthe topologicalconstraintson which itisbased- cannotbe

extended to 3-D NIO cellsbecausea 3-D bS containsedges.In thiscase,unlessone imposes overly
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FIGURE 2.3 : Derivation of finite element wpolosies for 2,-D NIO ceUa.

restrictive conditions on the way a bS edge is permitted, to intersect a NIO cell, decomposition solely via

template matching is infeasible.

An important property of the decomposition procedure described above is that each 2-D NIO cell contains

all the topological information necessary to associate a finite element structure to the cell such that the

continuity of the field variable across the cell boundary is ensured. Thus each 2-D NIO cell can be meshed

independently from neighboring cells.

To prove this property we note that the interface between neighboring 2-D elements is an edge (I-D

polyhedron). Therefore, to ensure continuity across the interface, the edge shared must be topologically

identical, i.e., the edges must have the same bounding vertices (nodes) in both elements. Along the

boundary of the NIO cell FE nodes are inserted onl....._yat the intersection points and at the cell vertices

classified as IN. Because of this condition, an_._y.yfinite element topology introduced in the NIO cell contains

only elements that have the correct interface with neighboring elements associated to either IN or NIO

cells. Also, the insertion of triangular elements in a NIO cell does not disrupt the regularity of the mesh

of square elements associated with the interior quaxitree.

For 3-D problems, neighboring elements have a face in common (a 2-D polyhedron) and continuity requires

that the shared face have the same set of bounding edges in both elements. In this case, the insertion of

nodes on the NIO cell boundary only at the intersection points and at the cell vertices is not sui_cient

to ensure that 3-D NIO cell meshed independently will satisfy continuity across the interface. We shall

expand on this problem later.



3 DECOMPOSITION OF 3-D NIO CELLS

The NIO cellsare classifiedas SNIO or CNIO, basedon the topologicaldescriptionofthe associated

polyhedron,_, definedas

= NION'S'. (2)

HereN" denotesa regularizedintersection[REQU85]. If_ doesnot containany vertexoredgeofbS,the

cellisclassifiedasSNIO. In thiscase,_,, the polyhedronauociatedwiththe SNIO cell,can be simply

describedas an octalcellinwhich a number ofverticeshavebeenshavedoff"by a singlecuttingsurface,

i,eo,

_o = Octant _) Ht (3)

where octsnt indicates an octal cell at resolution level, $ a regularized boolean operation and Hi is the

cutting surface. Figure 3.1 shows a typical SNIO cell and its corresponding location in the solid part.

Note that the smociated polyhedron R, is a cube with four corners shaved off.

!

FIGURE 3.1 : A SNIO cell sad its location on the solid part.

If _ contains vertices or edges of bS, the cell is dmmified as CNIO. Since a vertex is always defined by three

or more intersecting surfaces and an edge by exactly two, the associated polyhedron can be represented

as

Re = O_anL (_ H1 _) H2...(9 Ha (4)

where Hx, H2,...Hn are cutting surfaces. Figure 3.2 shows a CNIO cell which contains three edges and

a vertex of bS.
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FIGURE 3.2 : A CNIO cell and it_ location on the aolid part.

3.1 Decomposition of SNIO

Since only seven different FE topologies are required for all possible SNIO cell configurations, the cell is

decomposed by first selecting the appropriate template and then mapping the mesh from the template

onto _s. The template is chosen by counting the number of vertices shaved off by the cutting surface.

Figure 3.3 shows four cases of SNIO cells and the associated template derived meshes. The remaining

three cases of possible SNIO cells, not illustrated in this figure, are the complements of (a), (b) and (c).

The templates shown are based on linear hexahedral, pentahedral, wedge and tetrahedral elements 2 The

quadrilateral faces of the pentahedra] and wedge elements mapped on to the square sides of the NIO cell

ensure continuity along the interface between the NIO cell and the interior mesh. The union of the finite

elements represents a planar approximation of the actual geometry with all the non-planar segments of

bS intersected by the NIO cell replaced by triangular and quadrilateral bilinear patches. Finally, we

note that most of the NIO cells are classified u SNIO calls and their decomposition through template

matching is computationally inexpensive.

3.2 Decomposition of CNIO cells

The element "extractors", shown in Figure 3.4, are a modified version of the operators presented in

[WO084]. The operators _'i and _2 produce tetrahedral elements while _3 extracts pentahedra based on

the square faces of _¢ that correspond to the original faces of CNIO cell. These operators work as follows.

2 Linear pentahedral, wedge and tetrahedr_l elements can be generated by collapsing a standard isopara-

metric brick element [BATH82].



FIGURE3.3: SNIOcellsandauociLtedtemplstes.

FIGURE$.4 : Element extractors for CNI0 celb.
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2)

3)

rl scans the boundary representation of Rc searching for convex trivalent vertices. When such

a vertex is found I"1 extracts a tetrahedron by introducing a single cut in the domain (this

corresponds to the "slicing" operation in [WOO84]).

_'2 is applied when all the convex trivalent vertices are exhausted. This operator uses a convex

edge to extract a tetrahedron by introducing two cuts in the domain- referred to as "digging"

into the domain in _VO084].

1"3 looks for faces of Rc that correspond to original cell faces and extracts a pentahedron by

introducing multiple cuts that vary according to the location of the apex vertex. The choice

of the apex vertex is based on interference considerations. The operator 1"s is applied before 1"i

and _ in order to preserve all the original cell faces contained in Re.

_I mO_d to _
convex vortex v will
oxtract tetrahedron
that _ edge
and vertex interference
tests.

FIGURE 3.5 : Pathological cue for the interference test in [WOO84].

Before each extraction the validity of the candidate tetrahedron or pentahedron is checked through a

series of tests. As in [W0084], the vertices and edges of Rc are checked for interference with the faces of

the candidate element. More preckely, the interference test ensures that: (i) no vertex of Rc lies on any

of the faces of the candidate element, and (ii) no edge of Re intersects any of the faces of the candidate

element. This test is not enough, however, to ensure the validity of the element - see the exemplary

pathological case illustrated in Figure 3.5. To remove the ambiguity, an additional check is performed by

classifying the centroid of each face of the candidate element against Re. If all centroids are classified as

ON or IN the element is valid.

The implementation of the element extractors and the geometric checks described above requires a

point-membership classifier (PMC) -- a function that returns the classification of a point p with re-

spect to the polyhedron Re as

PMC , R.) = (;., 0., 0.0 • (5)

The PMC developed for the present work operates on planar polyhedra and is based on ray casting

algorithms [KALA82].

The boundary representation (BKep) structure used for maintaining and updating the topology of R_

has two graphs imbedded in it: (i) Face --, Edge --- Vertex and (ii) Vertex -, Edge --. Face. This

double structure provides greater flexibility while manipulating the BRep for the polyhedron, because

it reduces the number of scans required to retrieve the necessary information about the boundary. The

PMC permits the classification of the edges and the vertices in the BRep as convex or concave. This

piece of information is crucial for element extraction and must be updated after each element removal.

I0



All theoperatorsusedfor elementextractionpreservethedifferentialformof the Euler-Poincare formula

[BAUM72]

VF-VE+VV = 0 (6)

where F is the number of faces, E is the number of edges and V the number of vertices in the polyhedron.

Provided that the initial polyhedron is valid, the satisfaction of equation (6) ensures that the validity is

maintained at each stage of the extraction.

Figure 3.6 shows different stages of the element extraction on the _c associated with the CNIO cell in

Fig. 3.2. The operator rs is applied to extract a pentahedral element whose base is the original cell

face. This is followed by the recursive application of the operator rl until all trivalent convex vertices

are exhausted. Operator r2 takes over until one or more trivalent convex vertices become available and

1"1can be applied again. This progressively reduces the domain to a single tetrahedron.

(a) (b)

(c) (d)

FIGURE S.O z Element extraction on • CNIO cell: _ extraction of a pentahedron (a), a tetrahedron extracted

via rl (b) and _ (c), the complete dement topology.

The computational cost for deriving the BRep of _c and decomposing it through element extraction

is considerably higher than that associated with $NIO cell decomposition. We note, however, that the

number of CNIO cells is relatively small.
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4 BOUNDARY EVALUATION FOR CNIO CELLS

ORIGINAL PAGE IS

OE I_)OR QUALITy,

In the preceding sectionwe indicated that a boundary representationof the polyhedron _¢ isneeded

for the element extraction. The standard approach to derive the boundary for solidsdescribed in a

CSG environment isto intersectthe facesof allthe primitivesthat constitutethe CSG definitionof the

object and classifythe resultingedges againstthe combinatorial tree(thisoperation iscalledboundary

merging [REQU85]). Since this merging process involvesallthe primitives,boundary evaluation for a

CSG described solidisin generala computationally expensive procedure3.

I_ The polyhedron _c isformed by the intersectionof the CNIO octant and the originalsolid,i.e.,

"_ _, ffi CNIOn" S (7)

and therefore its boundary evaluation appears to require the boundary merging of the complete solid S

I_I and the CNIO cell.We note, however, that generallythe cellunder considerationisspatiallylocalized,

11 i.e.,each CNIO cellintersectsonly a limitednumber of primitives.In thiscase the boundary of _c can

,be obtained by merging only the boundary of the primitiveswhich interferewith the cell.

!/The primitiveincidenceinformation required to generate the nece_ary set oftentativeedges isproduced

[ the followingway. At the lastlevelofthe octreedecomposition every NIO cellisclassifiedagainsteach of

,!,the primitivesinthe CSG tree.When the cellisclassified"ON" s primitive,the primitiveisadded to the
!. incidence information carriedwith the cell.Hence, st the end of the cls_mification,each NIO cellpoints

'I to the subset of the CSG primitivesthat "interact"spatiallywith the cell.As indicated in [TILO81],

\ I[ primitiveincidenceleadsto "pruning" ofthe CSG treeand, consequently,reduces the computational cost

'_ of boundary merging.

t

The boundary of Rc is necessarilycontained in the boundary of the CNIO celland of the primitives

incidentupon the cell.Therefore the tentativesetofedges generated merging the incidentprimitivesand

the cellsufficesforbuilding the boundary representationofRe. Since severalCNIO cellsmay be incident

upon a small number of primitives,exploitingprimitiveincidence may save considerablecomputational

time during mesh generation.Fig. 4.1 illustratestree pruning for the CNIO cellshown in Fig. 3.2.

\
\

\
\
\

5 DISCUSSION

As indicated in the previous sections, by sdhereing to the underlying octal cell decomposition the mesh

acquires hierarchical structure, spatial sddremability sad interior geometrical regularity. We consider

these three properties central to the automation of finite element analysis. Therefore our approach to

octree based automatic meshing is focussed on preserving a tight correspondence between the finite

element and the cell structure. In particular, this requires embedding a finite element topology in the

NIO cells without disrupting the global structure and addressability of the mesh as well as the regularity

of the interior octree.

\

We treat NIO cells in a selective way: element extractors are used only for those - relatively few - cases

for which template matching is infeasible.Template controlleddecompostion is appealing because it is

s The uymptot/c time complexity for boundary evMuation rinses between O(n s Io$ n) Lnd O(n'), where n

is the number of primitives [TILO81].

'\
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FIGURE 4.1 : Tree pruning for • CNIO cell. (A, B, C, Daze primitives; ml,m= ue motions; _',F_*,-" represent

rqularised Booleu operations; O indicates the application of • motion.

¢omputationally inexpensive and allows a good degree of control on the elements which are im_rted in the

NIO cell. Conversely, element extractors require l_uilding and maintaining a sophisticated data structure

and provide a very limited amount of control on the mesh. The exclusive use of mapping or element

extraction on all the boundary cells - as proposed in [YERR84] and [YERR85], respectively - is either

too limited for handling complex geometries (the former) or computationally too demanding for practical

implementation (the latter). The selective use of the two algorithms based on the preliminary NIO cell

classification described in this paper results in a flexible approach designed to exploit the advantages of

both types of decomp_ition.

The algorithms discussed here are currently being implemented in an experiments] code built on the

PADL-2 modelling system. PADL-2 provides the utilities for modelling the solid and extracting the octree.

Also, the geometric routines contained in the modeller are used extensively to perform the operations

required for the SNIO/CNIO cell classification, the SNIO template mapping and the derivation of the

CNIO boundary representation. In particular, boundary evaluation is done by first pruning the CSG tree

and then using the PADL-2 incremental boundary evaluator [HART85]. The CNIO cell decomposition is

carried out in an independent modelling environment based on the BRep structure described in Section

3. The implementation of the element extractors is built on a specialized point-membership classifier

that operates on planar polyhedra.

To complete the implementation of our meshing algorithm we have to resolve some specific issues related

to interfacing CNIO cells with IN and SNIO cells. Our plans are the following. The CNIO/IN interface

is generally taken care of by using pentahe_lral elements. Whenever that is not po_ible, the propagation

of triangular faces is contained within the adjacent IN cell with a two-step procedure: (i) decompose

13



the IN cell into 6 identical pyramids with the apex at the cell centriod and (ii) split the pyramid on

the interface into two tetrahedral elements. The interface between SNIO/CNIO cells can be modelled

by either embedding the edges on the SNIO face into the BRep associated with the CNIO cell, or by

modifying locally the SNIO mapped mesh to reflect the entities on the CNIO face. Note that the task of

identifying the two ceils sharing a face is considerably simplified because of the spatial addressability of

the cell (and element) structure.

In conclusion, the approach presented here resolves efficiently the geometrical and topological issues

related to octree based automatic meshing and - in analogy with the quadtree structures described in

[KELA86] - opens a promising avenue for self-adaptive analysis.
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